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ABSTRACT: The theory and equations are developed for the scattering pattern of a dielectric cylinder of arbitrary 
cross section shape. The harmonic incident wave is assumed to have its electric vector parallel with the axis of the 
cylinder, and the field intensities are assumed to be independent of distance along the axis. Solutions are readily 
obtained for inhomogeneous cylinders when the permittivity is independent of distance along the cylinder axis. We 
treat the total field as an unknown function which is determined by solving a system of liner equations. In the case of 
the dielectric cylindrical shell of circular cross section, this technique yields results which agree accurately with the 
exact classical solution. Numerical solutions for the electromagnetic fields induced in an inhomogeneous biological 
medium are obtained using the method of moment’s solution. To reconstruct images during the inverse problem we use 
Levenberg-Marquardt method. 
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I.INTRODUCTION  
 

Microwave tomography techniques for biomedical applications are lagging behind imaging schemes based on X –ray, 
ultrasound application, nuclear magnetic resonance (NMR) and even electrical impedance tomography(EIT). During 
the past 20 years, immense researches are being carried out in microwave tomography to quantitatively reconstruct the 
complex permittivity distribution of the biological media. Spectral methods used for diffraction tomography have been 
investigated with application to microwave (Adams et al. 1982, Bolomey et al.1982, 1990, Devaney 1983, Slaney et al. 
1984, Rius et. Al 1987). The advantage of such methods results from the existing fast numerical algorithm. However, 
the diffraction tomography suffers from the fact that it is marred in strongly inhomogeneous media where Born and 
Rytov approximations are not valid (Slaney et al. 1984, Bolomey et al.1991).The other methods (Ney et al.1984,Wang 
et al. 1989, Caorsi et al. 1990) based on moment method solutions are being explored rigorously, but the stability 
depends on the measurement accuracy due to ill-conditioning of the matrix. 

II.FIELD INTEGRAL EQUATION 

 
By employing a Green’s function for half-space, it can be shown that the incident field at any point given in terms of 
the aperture field distribution Ea(x`,y`) by Ein(x, y)= - ௝	

ଶ
డ
డ௫

∫   Ea(x’,y`)H0
(1)[k{(x-x`)2+(y-y`)2}1/2]dy, where 2a denotes 

the length of the aperture. Numerical solutions for the electromagnetic fields induced in an inhomogeneous biological 
medium are obtained using the method of moment solution. A tensor integral equation approach usually produces an 
accuracy of high order, however the inverse problem of estimating the complex permittivity distribution would be 
rather involved. A relatively less accurate method described by Richmond (Richmond 1965) is used in our present 
analysis. This approach has been used in our preset analysis because (i)The solutions are available in closed form and 
(ii) the inverse problem can be presented in a very convenient way. According to Richmond, if the biological medium 
under investigation is decomposed into n number of cells, the total field distributions Ei (i = 1, n) within the cells when 
illuminated from an external source can be obtained from the relation  C E = Ein    Where C is an n*n coefficient matrix, 
E is an n×1 total field vector, Ein is an n×1 incident field vector in vacuum. The elements Cmp’s are givn by      

 
- 
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௠ߝ) + ௠௣= 1ܥ − 1) (j/2) [ܽ݇ߨ௠ܪଵ
(ଶ)(kܽ௠)-2j]      if p=m        

௠௣ =  (jܥ
గ௞௔೛
ଶ

௣ߝ) ( − ଴ܪଵ(kܽ௣)ܬ   (1
(ଶ)(kߩ௠௣)          if p≠ m    

ܽ௠ ,ܽ௣ are the radii of the equivalent circular cells having the same cross sectional area as cell m and p respectively : 
K=(2π/λ0) is the free space propagation constant, H0 and H1 are Hankel functions of order zero  and one respectively, 
ϱmp is the radial distance between cells m and p. 
 

III.THEORETICAL MODEL 
 
The theoretical model used to test our algorithm is shown in figher1. It is high contrast square biological object 9.6 
cm*9.6 cm consisting of muscle and bone having complex dielectric constants 50-j23 and 8-j1.2 respectively at a 
frequency of 1 GHz. The object is kept immersed in saline water having complex dielectric constant 76-j40. 

The target is illuminated with TE fields radiating from an open ended dielectric wave guide having sinusoidal 
field aperture field distribution. The transmitter is moved along four mutually orthogonal directions. For each of the 
transmitter positions along a particular transmitting plane, the received fields at eighteen locations in the other three 
orthogonal planes were measured theoretically described by Richmond (Richmond 1965)at a frequency 1 GHz. 
Therefore the  measurement set contains 288 independent data. The rectangular model together with saline water region 
is divided into 324 equal square cells 0.6 cm × 0.6 cm. 

 
FIGURE OF 2D MODEL 

 

 
Fig1. Theoretical model, digitized cross-section, and different  transmitter- receiver positions. 

positions. 

 

IV. INVERSE PROBLEM 

we defined squared errors at receiver points as 
∅ = (Er - E0)⨥ (Er - E0)         
Where ⨥ denotes the conjugate transpose andܧ଴:ܥ௠ →  : ௥	ܧ,௡, the electric ields we measure at receiver pointsܥ
௠ܥ →  ௡, afunction mapping  the complex permittivity distribution with m degree of freedom into a set of  nܥ
approximate electric field observation, and also 
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ߝ	 ∈  .௠, the complex permittivity distributions with m degrees of freedomܥ
We want to determine ߝ for which ߮ is minimum. We first differeniate ߮ with respect to ∈′ and set it equal to zero 
vector, 

′௥ܧ	]=′∅ ௥ܧ)/[    (଴ܧ−

Where [ܧ௥′ ] is an (n*m) Jacobian matrix and is defined by           
′௥ܧ] 	]௡ =(δ[ܧ௥]/δߝ௜)      
Now expanding ∅′ in Taylor series and keeping only the linear terms, we have  
ߝ ) ′∅ +    ߝ∆.(߳)′′∅	+ (ߝ)′∅	= (ߝ∆
 It has been stated in (Yorkey et. Al 1987) that the Hessian matrix ∅′′ can be written as 
′௥ܧ]=′′∅               ]!      
Since the krnecker matrix product term is often negligible compared to [ܧ௥′ ′௥ܧ![  
Hence ∆ߝ can be written as 
                                                 ∆∈ =-[∅′′]ିଵ.∅′ 
′௥ܧ]]−=                                                      ]!	]ିଵ.[ܧ௥′ ௥ܧ)![       (଴ܧ−
Equation  gives an iterative procedure to findߝ. At ith iteration we find ∆ߝ′ and update our permittivity values by  

  ௜ߝ∆+௜ߝ=௜ାଵߝ

V. RECONSTRUCTION ALGORITHM 

To apply the reconstruction algorithm, the biological medium was assumed to be a homogeneous one having complex 
dielectric constant 50-j23 i.e. it was assumed to be filled up with muscle. The receiver fields at different receiver 
location were computed for each transmitter position, using the described by Richmond the Jacobian matrix was 
computed. In the iterative equation, it was found that [[ܧ]⨥ܧ]ିଵ was ill-conditioned , the condition number was found 
to be 12. The ill-conditioning makes its calculated inverse accurate for small dielectric constants updates only. We 
choose Levenberg Marquardt method to handle this ill-conditioning.  
The Marquardt form is given by  
                                                                (A+λI)∆∈=B 
      Where λ is a scalar, A is[ܧ௥′ ′௥ܧ⨥[  and B is [ܧ௥′ ௥ܧ)⨥[ −  .(଴ܧ
       The Merquardet method is as follows: 

(i) ∅ is computed.  
(ii) A value of λ is picked up(λ=.0001 in our case). 
(iii)  Equation above is solved for ∆∈ and ∅௞ାଵ is evaluated 
(iv) If ∅௞ାଵ ≥ ∅௞,	ߣ is increased by a factor 10 and control is transferred to step(iii) 
(v) If  ∅௞ାଵ ≤ ∅௞ , λ  is decreased by a factor 10,the total solution is updated ∊←∊ +∆∊, and  control is 

transferred to step (iii). 

The only priori information we have used in our algorithm is that the real part of the complex dielectric constant cannot 
be negative and the imaginary part cannot be positive. Figure 2 shows the model in terms of the real and imaginary 
parts. Figure 3 shows the reconstructed images after 0.1,5,10,12,and 15 iterations. We define the Mean Estimation             
Error as:                             
                          Mean Estimation Error = ଵ

ே
∑ ⎸∈೔ି∈೔

∗

∈೔
∗ ⎹*100 
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VI .COMPUTATION OF THE JACOBIAN 

 
 
                                                    Now we can write E=ିܥଵܧ௠ 
 
                                                       Hence          [ܧ′]௜௟ =ߜ[ିܥଵܧ௜௡]௜/ߝߜ௟ 
 ௜[௜௡ܧ].ଵିܥ(௟ߝߜ/ܥߜ)ଵିܥ-=                                                                                     
 ௜[ܧ](௟ߝߜ/ܥߜ)ଵିܥ	- =                               
To compute the Jacobian matrix  [ܧ௥′ ], we noticce that since the receiver and located at the center of some cells, hence 
′௥ܧ ௥ must be a subset of E. so we can concludeܧ  is also a subset of ܧ′.In fact we had irst determined ܧ′, an n×n matrix, 
for each transmitter position. We retained only q number of row out of n rows, where q is the number of receivers for 
each transmitter position, so that the Jacobian matrix would be of order (q×n). We appended q rows of each transmitter 
position so that the Jacobian matrix would be of order (qs×n). Where s is the number of transmitter position. In our 
calculation, we have q=18, s=16 and n=256 so that the order of the Jacobian matrix was (288×256). 

 
VII. EXPERIMENTAL RESULTS 

 
To apply the reconstruction algorithm, it was assumed that the biological medium is filled up with muscle only i.e. it 
was assumed to be homogeneous one having complex dielectric constant 50-j23. The received fields at different 
receiver location were computed for each transmitter position. The only priori information we have used in our 
algorithm is that the real part of the complex dielectric constant can`t be negative and the imaginary part can`t be 
positive. 

 
RECONSTRUCTED IMAGES FOR THE 2D MODEL. 

 
 

 
 

Fig2. Reconstructed model with real part and imaginary part 
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Now plot the error vs. iteration ,we obtain the following graph. The iteration is stopped  when the output error of the 
order of  10ିସ. 

 
Fig3. This fig shows error vs. iteration 

VIII.CONCLUSION 
 

To apply there construction algorithm, it was initially assumed that the biological medium is filled up with muscle only. 
The received fields at different receiver locations were computed for each transmitter position. The only priori 
information we have used in our algorithmic that there all part of the complex dielectric constant cannot be negative and 
the imaginary part cannot be positive. The iteration is stopped when the 2-norm error output is of the order of 10ିସ.In 
the first case, algorithms developed were in the ideal condition. i.e.  Noise is absent.  In this case reconstruction images 
were perfect.  But when we introduced noise then reconstruction image is changes.  We developed further algorithms 
(gauss-Newton algorithm) that shows that nosy reconstruction images becomes Similar that was obtained in ideal 
condition. 
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